Vaccine Development against HSV Past, Current and Future

Lawrence R. Stanberry, M.D., Ph.D.
Columbia University
New York, USA

Conference on Herpes Virus Infection and Immunity
Annecy, France
June 18-20, 2012
Two Types of HSV Vaccines

Prophylactic Vaccines
For the uninfected patient, intended to protect against (genital) infection or disease

Therapeutic Vaccines
For the infected patient, intended to reduce the frequency and/or severity of recurrent infections and transmission to susceptible partners
HSV Vaccine Strategies

1. Inactivated virus preparations
2. Live, cell culture-attenuated vaccines
3. Live, genetically-attenuated vaccines
4. Live, replication-impaired vaccines
5. Vectored vaccines
6. Nucleic acid-based vaccines
7. Subunit (recombinant) vaccines
8. Peptide vaccines
1. Inactivated Virus Preparations

- Checkered history
- Limited safety concerns
- Broadly immunogenic but predominantly induces antibody responses
- Adjuvants enhance CMI responses
- Most clinical trials have been seriously flawed
- No inactivated vaccine has been proven effective
- No inactivated virus vaccine currently in commercial development
1. Inactivated (Whole) Virus Preparations

Skinner HSV-1 Vaccine - Developer: Porton International

- **Prophylaxis study (open trial)**
 - used consorts of patients with genital herpes
 - 1/60 vaccine recipients developed genital herpes; no control group; historic attack rate reported at 40%/ per year
 - no pre-immunization serology
 - vaccine poorly immunogenic

- **Therapeutic study (randomized, double-blind, placebo-controlled)**
 - treatment of patients with > 6 recurrences per year
 - vaccination schedule: 0,1,2 months - f/u to 12 months
 - reduced mean recurrences per month from 0.7 to 0.5 in females, no effect in males
1. Inactivated (Subunit) Virus Preparations

HSV-2 GS Vaccine - Developer: Merck & Co

- Inactivated HSV-2 virion- lectin column purified vaccine
- Prophylaxis study (randomized, double-blind, placebo-controlled)
 - used consorts of patients with genital herpes
 - vaccine was poorly immunogenic inducing antibody titers substantially less than those seen following infection
- Status: Development discontinued
2. Live, Cell Culture Attenuated Vaccines

- Multiple cell culture passages have failed to produce a vaccine that does not revert to a pathogenic virus
- Capable of establishing latency
- Broadly immunogenic and capable of inducing both humoral and cellular immune responses and with reversion capable of causing disease
3. Live, Genetically Engineered Vaccines

- Multiple mutations and genetically stable thus limited safety concerns
- If not over-attenuated should be broadly immunogenic and capable of inducing both humoral and cellular immune responses
3. Live, Genetically Engineered Vaccines

R7020 Vaccine - Developer: Pasteur-Merieux

- Safety and immunogenicity study (open trial)
 - well tolerated but poorly immunogenic after two doses
 - thought to be overly attenuated
- Status: Development discontinued
3. Live, Genetically Engineered Vaccines

RAV 9395 Vaccine - Developer: Aviron (MedImmune)

- Animal studies
 - protected guinea pigs against disease and latency
 - did not prevent mucosal infection at any dose tested
- Status: Development discontinued
4. Live, Replication-Impaired Vaccines

- Genetically-engineered to undergo only a single replication cycle - progeny virions are non-infectious or no progeny are generated
- Safety concerns regarding possibility of recombination resulting in production of virulent virus
- Broadly immunogenic inducing antibody and CMI responses
- Could be issues regarding ability to use antibody assays to detect vaccine failure (i.e., infection)
4. Live, Replication-Impaired Vaccines

Knipe HSV-2 Vaccines - Developer: Sanofi-Pasteur

- HSV-2 mutants lacking two important genes
- Induces humoral and cellular immune responses and protects animals against disease resulting from intravaginal HSV-2 challenge
- Further development planned
4. Live, Replication-Impaired Vaccines

TA-HSV-2 Vaccine – Developers: Cantab/Glaxo-Wellcome

- Single deletion -gH
- Animal studies
 - Prophylactic vaccination protected animals against genital disease and reduced latency but did not prevent mucosal infection
 - Therapeutic vaccination reduced frequency of recurrent infections in guinea pigs
4. Live, Replication-Impaired Vaccines

TA-HSV-2 Vaccine Developers: Cantab/Glaxo-Wellcome

- Single deletion -gH gene
- Human safety/immunogenicity phase I studies
 - dose-ranging study in HSV seropositive and seronegative subjects, subcutaneous immunization
 - vaccine well tolerated, minimal reactogenicity
 - in seronegative subjects vaccination induced T and B cell responses
4. Live, Replication-Impaired Vaccines

TA-HSV-2 Vaccine Developers: Cantab/Glaxo-Wellcome

- Phase II safety/immunogenicity/therapeutic efficacy trial
 - subjects are patients with frequently recurring genital herpes, > 6 recurrences per year
 - primary outcome measure is reduction in the frequency of symptomatic recurrent infections
 - Results showed no effect on symptomatic or asymptomatic recurrences
- Status: Development discontinued
5. Vectored Vaccines

- HSV gene(s) expressed by a replicating vector
- Safety concerns are based on profile of the vector
- Limited HSV antigen expression provides narrow immunogenicity but responses are both humoral and cellular
- Vector examples:
 - Canarypox virus
 - Varicella-zoster virus
 - Salmonella
- Status: Sindbis virus vectored HSV-2 gD vaccine had limited preclinical development by Chiron (Novartis) but development appears to have been discontinued
6. Nucleic Acid-Based Vaccines

- Plasmid expression vectors containing one or two HSV genes and may also encode cytokine genes
- Theoretical safety concerns
- Limited HSV antigen expression therefore narrow immunogenicity (similar to recombinant subunit vaccines)
- Can induce CMI responses
- PowderMed (Pfizer) – DNA vaccines on gold beads; phase 1 study completed but results not released; development appears to have been discontinued
- Merck - HSV-2 gD vaccine; development appears to have been discontinued
- Vical - Vaccine encoding HSV-2 antigens formulated with cationic lipid; no mention of clinical trials at ClinicalTrials.gov.
6. Nucleic Acid-Based Vaccines

HSV-2 (gD) DNA Vaccine: Developer: Wyeth Lederle (Pfizer)

- Vaccine included bupivacaine and was delivered using a Biojector needle-free injection system.
- A phase 1 clinical trial using doses up to 3,000 ug showed the vaccine was well tolerated but poorly immunogenic.
- Status: Development appears to have been discontinued.
7. Subunit (Recombinant) Vaccines

- Produced by recombinant DNA technology
- No safety concerns except as regards adjuvants
- Limited number of antigens and therefore narrow immunogenicity
- Predominantly induces antibody responses but inclusion of adjuvants enhances CMI responses (and reactogenicity)
7. Subunit Vaccines

gD2/alum Vaccine - Developer: Chiron (Novartis)

- Therapeutic study - (randomized, double-blind, placebo-controlled)
 - patients with 4-14 recurrences per year
 - vaccination schedule: 0 and 2 months; f/u 12 months
 - vaccine (100ug dose) boosted neutralizing titers
 - Vaccinated subjects had fewer recurrences
- Subsequent therapeutic trial with gD2/gB2/MF59 showed no benefit.
- Status: Development discontinued
7. Subunit Vaccines

gD2/gB2/MF59 Vaccine - Developer: Chiron

- Prophylaxis studies - (randomized, double-blind, placebo-controlled)
 - consorts of patients with genital herpes and subjects with multiple sexual partners or history of an STD
 - the vaccine induced high neutralizing titers
 - primary outcome measure: protection against infection as measured by seroconversion or HSV isolation
 - vaccination afforded 50% protection during the initial 5 months of the trial, however the overall efficacy was only 9% (26% for females and -4% for males)
 - Vaccine may have had different effects in the two study populations
7. Subunit Vaccines

gD2/Alum/MPL Vaccine - Developer: GlaxoSmithKline

- Clinical trials
 - 1st outcome measure - prevention of genital HSV disease
 - Three phase III studies: vaccine immunogenic and well tolerated
 - 007 study: double seronegative consorts; vaccine protected women but not men
 - 017 study: ± HSV-1 positive consorts; vaccine protected only double seronegative women
 - Herpevac study: double seronegative women; vaccine did not protect against HSV-2 genital herpes but did protect against HSV-1 genital herpes

- Status: Development discontinued
8. Peptide Vaccines

- Synthetic peptides that are known antigenic epitopes
- Limited safety concerns
- Single peptides are narrowly immunogenic, hence this strategy will require pools of peptides
- Capable of stimulating both B and T cell responses
- Responses can be enhanced with adjuvants
- Genocea, using a clever methodology to identify T-cell epitopes, is in the preclinical development of both therapeutic and prophylactic vaccines. Currently there is no listing on ClinicalTrials.gov
HerpV Vaccine: Developer: Agenus

- Vaccine consists 32 synthetic 35mer HSV-2 peptides non-covalently complexed with recombinant human Hsc70 protein with QS21 adjuvant
- A phase 1 clinical trial in HSV-2 seropositive subjects showed the vaccine was reactogenic and produced variable T cell responses
- Status: The company reports plans to advance to phase 2 trial in 2012
Herpes Simplex Virus Vaccines: Summary

- A variety of strategies have been exploited in pursuit of an effective HSV vaccine
- Subunit HSV vaccine studies have established that it is feasible to make prophylactic and therapeutic vaccines but a broadly useful product remains elusive
- In the short run the most promising two strategies are live, replication incompetent mutants (Knipe/Sanofi-Pasteur) and T-cell peptide vaccines (Genocea)
- In the longer term a greater focus on induction of local mucosal responses and prevention of latency may be the key to a broadly effective vaccine.
Colleagues/Collaborators

and friends

Nigel Bourne
Gregg Milligan
Rick Pyles
Susan Rosenthal
David Bernstein
Carolyn Deal
David Knipe
Tony Minson
Larry Corey
Anna Wald
David Koelle
Bernard Roizman
Gary Cohen
Roz Eisenberg
Harvey Cohen
Richard Whitley
Tony Cunningham
Tony Simmons
Steve Straus
Jeff Cohen
Moncef Slaoui
Gary Dubin
Pierre Vandepapeliere
Bob Belshe